Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587076

ABSTRACT

BACKGROUNDDiagnosis of PMM2-CDG, the most common congenital disorder of glycosylation (CDG), relies on measuring carbohydrate-deficient transferrin (CDT) and genetic testing. CDT tests have false negatives and may normalize with age. Site-specific changes in protein N-glycosylation have not been reported in sera in PMM2-CDG.METHODSUsing multistep mass spectrometry-based N-glycoproteomics, we analyzed sera from 72 individuals to discover and validate glycopeptide alterations. We performed comprehensive tandem mass tag-based discovery experiments in well-characterized patients and controls. Next, we developed a method for rapid profiling of additional samples. Finally, targeted mass spectrometry was used for validation in an independent set of samples in a blinded fashion.RESULTSOf the 3,342 N-glycopeptides identified, patients exhibited decrease in complex-type N-glycans and increase in truncated, mannose-rich, and hybrid species. We identified a glycopeptide from complement C4 carrying the glycan Man5GlcNAc2, which was not detected in controls, in 5 patients with normal CDT results, including 1 after liver transplant and 2 with a known genetic variant associated with mild disease, indicating greater sensitivity than CDT. It was detected by targeted analysis in 2 individuals with variants of uncertain significance in PMM2.CONCLUSIONComplement C4-derived Man5GlcNAc2 glycopeptide could be a biomarker for accurate diagnosis and therapeutic monitoring of patients with PMM2-CDG and other CDGs.FUNDINGU54NS115198 (Frontiers in Congenital Disorders of Glycosylation: NINDS; NCATS; Eunice Kennedy Shriver NICHD; Rare Disorders Consortium Disease Network); K08NS118119 (NINDS); Minnesota Partnership for Biotechnology and Medical Genomics; Rocket Fund; R01DK099551 (NIDDK); Mayo Clinic DERIVE Office; Mayo Clinic Center for Biomedical Discovery; IA/CRC/20/1/600002 (Center for Rare Disease Diagnosis, Research and Training; DBT/Wellcome Trust India Alliance).


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases)/deficiency , Humans , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Complement C4 , Glycopeptides , Biomarkers , Polysaccharides
2.
Cell Rep ; 43(3): 113883, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38430517

ABSTRACT

Phosphomannomutase 2-congenital disorder of glycosylation (PMM2-CDG) is a rare inborn error of metabolism caused by deficiency of the PMM2 enzyme, which leads to impaired protein glycosylation. While the disorder presents with primarily neurological symptoms, there is limited knowledge about the specific brain-related changes caused by PMM2 deficiency. Here, we demonstrate aberrant neural activity in 2D neuronal networks from PMM2-CDG individuals. Utilizing multi-omics datasets from 3D human cortical organoids (hCOs) derived from PMM2-CDG individuals, we identify widespread decreases in protein glycosylation, highlighting impaired glycosylation as a key pathological feature of PMM2-CDG, as well as impaired mitochondrial structure and abnormal glucose metabolism in PMM2-deficient hCOs, indicating disturbances in energy metabolism. Correlation between PMM2 enzymatic activity in hCOs and symptom severity suggests that the level of PMM2 enzyme function directly influences neurological manifestations. These findings enhance our understanding of specific brain-related perturbations associated with PMM2-CDG, offering insights into the underlying mechanisms and potential directions for therapeutic interventions.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases)/deficiency , Humans , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/metabolism , Glycosylation
3.
Sci Rep ; 14(1): 5755, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459093

ABSTRACT

Identifying disease predictors through advanced statistical models enables the discovery of treatment targets for schizophrenia. In this study, a multifaceted clinical and laboratory analysis was conducted, incorporating magnetic resonance spectroscopy with immunology markers, psychiatric scores, and biochemical data, on a cohort of 45 patients diagnosed with schizophrenia and 51 healthy controls. The aim was to delineate predictive markers for diagnosing schizophrenia. A logistic regression model was used, as utilized to analyze the impact of multivariate variables on the prevalence of schizophrenia. Utilization of a stepwise algorithm yielded a final model, optimized using Akaike's information criterion and a logit link function, which incorporated eight predictors (White Blood Cells, Reactive Lymphocytes, Red Blood Cells, Glucose, Insulin, Beck Depression score, Brain Taurine, Creatine and Phosphocreatine concentration). No single factor can reliably differentiate between healthy patients and those with schizophrenia. Therefore, it is valuable to simultaneously consider the values of multiple factors and classify patients using a multivariate model.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnosis , Creatine , Phosphocreatine , Magnetic Resonance Spectroscopy , Brain
4.
Genet Med ; 26(2): 101027, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37955240

ABSTRACT

PURPOSE: In the absence of prospective data on neurological symptoms, disease outcome, or guidelines for system specific management in phosphomannomutase 2-congenital disorders of glycosylation (PMM2-CDG), we aimed to collect and review natural history data. METHODS: Fifty-one molecularly confirmed individuals with PMM2-CDG enrolled in the Frontiers of Congenital Disorders of Glycosylation natural history study were reviewed. In addition, we prospectively reviewed a smaller cohort of these individuals with PMM2-CDG on off-label acetazolamide treatment. RESULTS: Mean age at diagnosis was 28.04 months. Developmental delay is a constant phenotype. Neurological manifestation included ataxia (90.2%), myopathy (82.4%), seizures (56.9%), neuropathy (52.9%), microcephaly (19.1%), extrapyramidal symptoms (27.5%), stroke-like episodes (SLE) (15.7%), and spasticity (13.7%). Progressive cerebellar atrophy is the characteristic neuroimaging finding. Additionally, supratentorial white matter changes were noted in adult age. No correlation was observed between the seizure severity and SLE risk, although all patients with SLE have had seizures in the past. "Off-label" acetazolamide therapy in a smaller sub-cohort resulted in improvement in speech fluency but did not show statistically significant improvement in objective ataxia scores. CONCLUSION: Clinical and radiological findings suggest both neurodevelopmental and neurodegenerative pathophysiology. Seizures may manifest at any age and are responsive to levetiracetam monotherapy in most cases. Febrile seizure is the most common trigger for SLEs. Acetazolamide is well tolerated.


Subject(s)
Cerebellar Ataxia , Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases)/deficiency , Stroke , Adult , Humans , Child, Preschool , Congenital Disorders of Glycosylation/drug therapy , Congenital Disorders of Glycosylation/genetics , Acetazolamide/therapeutic use , Follow-Up Studies , Prospective Studies
5.
Genes (Basel) ; 14(8)2023 08 04.
Article in English | MEDLINE | ID: mdl-37628636

ABSTRACT

Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in PMM2 patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.


Subject(s)
Congenital Disorders of Glycosylation , Humans , Congenital Disorders of Glycosylation/genetics , Autophagy/genetics , Mitochondria/genetics , Energy Metabolism
6.
Cell Rep Med ; 4(6): 101056, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37257447

ABSTRACT

Abnormal polyol metabolism is predominantly associated with diabetes, where excess glucose is converted to sorbitol by aldose reductase (AR). Recently, abnormal polyol metabolism has been implicated in phosphomannomutase 2 congenital disorder of glycosylation (PMM2-CDG) and an AR inhibitor, epalrestat, proposed as a potential therapy. Considering that the PMM2 enzyme is not directly involved in polyol metabolism, the increased polyol production and epalrestat's therapeutic mechanism in PMM2-CDG remained elusive. PMM2-CDG, caused by PMM2 deficiency, presents with depleted GDP-mannose and abnormal glycosylation. Here, we show that, apart from glycosylation abnormalities, PMM2 deficiency affects intracellular glucose flux, resulting in polyol increase. Targeting AR with epalrestat decreases polyols and increases GDP-mannose both in patient-derived fibroblasts and in pmm2 mutant zebrafish. Using tracer studies, we demonstrate that AR inhibition diverts glucose flux away from polyol production toward the synthesis of sugar nucleotides, and ultimately glycosylation. Finally, PMM2-CDG individuals treated with epalrestat show a clinical and biochemical improvement.


Subject(s)
Aldehyde Reductase , Zebrafish , Animals , Zebrafish/metabolism , Glycosylation , Aldehyde Reductase/genetics , Aldehyde Reductase/metabolism , Mannose/metabolism , Metabolomics
7.
Mol Genet Metab ; 139(2): 107606, 2023 06.
Article in English | MEDLINE | ID: mdl-37224763

ABSTRACT

BACKGROUND: Given the lack of reliable data on the prevalence of bleeding abnormalities and thrombotic episodes in PMM2-CDG patients, and whether coagulation abnormalities change over time, we prospectively collected and reviewed natural history data. Patients with PMM2-CDG often have abnormal coagulation studies due to glycosylation abnormalities but the frequency of complications resulting from these has not been prospectively studied. METHODS: We studied fifty individuals enrolled in the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study with molecularly confirmed diagnosis of PMM2-CDG. We collected data on prothrombin time (PT), international normalized ratio (INR), activated partial thromboplastin time (aPTT), platelets, factor IX activity (FIX), factor XI activity (FXI), protein C activity (PC), protein S activity (PS) and antithrombin activity (AT). RESULTS: Prothrombotic and antithrombotic factor activities were frequently abnormal in PMM2-CDG patients, including AT, PC, PT, INR, and FXI. AT deficiency was the most common abnormality in 83.3% of patients. AT activity was below 50% in 62.5% of all patients (normal range 80-130%). Interestingly, 16% of the cohort experienced symptoms of spontaneous bleeding and 10% had thrombosis. Stroke-like episodes (SLE) were reported in 18% of patients in our cohort. Based on the linear growth models, on average, patients did not show significant change in AT (n = 48; t(23.8) = 1.75, p = 0.09), FIX (n = 36; t(61) = 1.60, p = 0.12), FXI (n = 39; t(22.8) = 1.88, p = 0.07), PS (n = 25; t(28.8) = 1.08, p = 0.29), PC (n = 38; t(68) = 1.61, p = 0.11), INR (n = 44; t(184) = -1.06, p = 0.29), or PT (n = 43; t(192) = -0.69, p = 0.49) over time. AT activity positively correlated with FIX activity. PS activity was significantly lower in males. CONCLUSION: Based on our natural history data and previous literature, we conclude that caution should be exercised when the AT levels are lower than 65%, as most thrombotic events occur in patients with AT below this level. All five, male PMM2-CDG patients in our cohort who developed thrombosis had abnormal AT levels, ranging between 19% and 63%. Thrombosis was associated with infection in all cases. We did not find significant change in AT levels over time. Several PMM2-CDG patients had an increased bleeding tendency. More long-term follow-up is necessary on coagulation abnormalities and the associated clinical symptoms to provide guidelines for therapy, patient management, and appropriate counseling. SYNOPSIS: Most PMM2-CDG patients display chronic coagulation abnormalities without significant improvement, associated with a frequency of 16% clinical bleeding abnormalities, and 10% thrombotic episodes in patients with severe antithrombin deficiency.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases) , Thrombosis , Humans , Male , Glycosylation , Prospective Studies , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/diagnosis , Thrombosis/epidemiology , Thrombosis/genetics , Phosphotransferases (Phosphomutases)/genetics , Antithrombins/therapeutic use
8.
Mol Genet Metab ; 138(4): 107559, 2023 04.
Article in English | MEDLINE | ID: mdl-36965289

ABSTRACT

Phosphomannomutase-2-congenital disorder of glycosylation (PMM2-CDG) is the most common CDG and presents with highly variable features ranging from isolated neurologic involvement to severe multi-organ dysfunction. Liver abnormalities occur in in almost all patients and frequently include hepatomegaly and elevated aminotransferases, although only a minority of patients develop progressive hepatic fibrosis and liver failure. No curative therapies are currently available for PMM2-CDG, although investigation into several novel therapies is ongoing. We report the first successful liver transplantation in a 4-year-old patient with PMM2-CDG. Over a 3-year follow-up period, she demonstrated improved growth and neurocognitive development and complete normalization of liver enzymes, coagulation parameters, and carbohydrate-deficient transferrin profile, but persistently abnormal IgG glycosylation and recurrent upper airway infections that did not require hospitalization. Liver transplant should be considered as a treatment option for PMM2-CDG patients with end-stage liver disease, however these patients may be at increased risk for recurrent bacterial infections post-transplant.


Subject(s)
Congenital Disorders of Glycosylation , Liver Transplantation , Phosphotransferases (Phosphomutases) , Female , Humans , Child, Preschool , Glycosylation , Follow-Up Studies , Phosphotransferases (Phosphomutases)/genetics , Congenital Disorders of Glycosylation/complications , Congenital Disorders of Glycosylation/genetics , Liver/metabolism , Immunoglobulin G
9.
Biomedicines ; 11(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36830777

ABSTRACT

The altered cerebral energy metabolism central to schizophrenia can be linked to lactate accumulation. Lactic acid is produced by gastrointestinal bacteria, among others, and readily crosses the blood-brain barrier, leading to the brain acidity. This study aimed to examine the association of the oral microbiota with the effects of acid stress induced by an increase of brain lactate in schizophrenia patients. The study included patients with a diagnosis of acute polyphasic psychotic disorder meeting criteria for schizophrenia at 3-month follow-up. Results: Individuals with a significantly higher total score on the Positive and Negative Syndrome Scale had statistically significantly lower lactate concentrations compared to those with a lower total score and higher brain lactate. We observed a positive correlation between Actinomyces and lactate levels in the anterior cingulate cap and a negative correlation between bacteria associated with lactate metabolism and some clinical assessment scales. Conclusions: Shifts in the oral microbiota in favour of lactate-utilising bacterial genera may represent a compensatory mechanism in response to increased lactate production in the brain. Assessment of neuronal function mediated by ALA-LAC-dependent NMDA regulatory mechanisms may, thus, support new therapies for schizophrenia, for which acidosis has become a differentiating feature of individuals with schizophrenia endophenotypes.

11.
Mol Genet Metab ; 136(2): 145-151, 2022 06.
Article in English | MEDLINE | ID: mdl-35491370

ABSTRACT

Patient-reported outcomes (PROs) measure important aspects of disease burden, however they have received limited attention in the care of patients with Congenital Disorders of Glycosylation (CDG). We evaluated the PROs and correlation between clinical disease severity scoring and reported quality of life (QoL) in a PMM2-CDG patient cohort. Twenty-five patients with diagnosis of PMM2-CDG were enrolled as part of the Frontiers in Congenital Disorders of Glycosylation Consortium (FCDGC) natural history study. Patient- Reported Outcomes Measurement Information System (PROMIS) was completed by caregivers to assess health-related QoL. Clinical disease severity was scored by medical providers using the Nijmegen Progression CDG Rating Scale (NPCRS). The domains such as physical activity, strength impact, upper extremity, physical mobility, and a satisfaction in social roles (peer relationships) were found to be the most affected in the PMM2-CDG population compared to US general population. We found a strong correlation between NPCRS 1 (current functional ability) and three out of ten PROMIS subscales. NPCRS 2 (laboratory and organ function) and NPCRS 3 (neurological involvement) did not correlate with PROMIS. Mental health domains, such as anxiety, were positively correlated with depressive symptoms (r = 0.76, p = 0.004), fatigue (r = 0.67, p = 0.04). Surprisingly, patients with severely affected physical mobility showed low anxiety scores according to PROMIS (inverse correlation, r = -0.74, p = 0.005). Additionally, there was a positive correlation between upper extremity and physical mobility (r = 0.75, p = 002). Here, we found that PROMIS is an informative additional tool to measure CDG disease burden, which could be used as clinical trial outcome measures. The addition of PROMIS to clinical follow-up could help improve the quality of care for PMM2-CDG by facilitating a holistic approach for clinical decision-making. SYNOPSIS: We recommend PROMIS as an informative tool to measure disease burden in PMM2-CDG in addition to traditional CDG disease severity scores.


Subject(s)
Congenital Disorders of Glycosylation , Phosphotransferases (Phosphomutases) , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Humans , Patient Reported Outcome Measures , Phosphotransferases (Phosphomutases)/deficiency , Phosphotransferases (Phosphomutases)/genetics , Quality of Life
12.
J Clin Med ; 11(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35407472

ABSTRACT

Ischemic stroke accounts for over 80% of all strokes and is one of the leading causes of mortality and permanent disability worldwide. Intravenous administration of recombinant tissue plasminogen activator (rt-PA) is an approved treatment strategy for acute ischemic stroke of large arteries within 4.5 h of onset, and mechanical thrombectomy can be used for large arteries occlusion up to 24 h after onset. Improving diagnostic work up for acute treatment, reducing onset-to-needle time and urgent radiological access angiographic CT images (angioCT) and Magnetic Resonance Imaging (MRI) are real problems for many healthcare systems, which limits the number of patients with good prognosis in real world compared to the results of randomized controlled trials. The applied endovascular procedures demonstrated high efficacy, but some cellular mechanisms, following reperfusion, are still unknown. Changes in the morphology and function of mitochondria associated with reperfusion and ischemia-reperfusion neuronal death are still understudied research fields. Moreover, future research is needed to elucidate the relationship between continuously refined imaging techniques and the variable structure or physical properties of the clot along with vascular permeability and the pleiotropism of ischemic reperfusion lesions in the penumbra, in order to define targeted preventive procedures promoting long-term health benefits.

13.
J Med Internet Res ; 24(3): e33560, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35285812

ABSTRACT

BACKGROUND: Mental health disorders are a leading cause of medical disabilities across an individual's lifespan. This burden is particularly substantial in children and adolescents because of challenges in diagnosis and the lack of precision medicine approaches. However, the widespread adoption of wearable devices (eg, smart watches) that are conducive for artificial intelligence applications to remotely diagnose and manage psychiatric disorders in children and adolescents is promising. OBJECTIVE: This study aims to conduct a scoping review to study, characterize, and identify areas of innovations with wearable devices that can augment current in-person physician assessments to individualize diagnosis and management of psychiatric disorders in child and adolescent psychiatry. METHODS: This scoping review used information from the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A comprehensive search of several databases from 2011 to June 25, 2021, limited to the English language and excluding animal studies, was conducted. The databases included Ovid MEDLINE and Epub ahead of print, in-process and other nonindexed citations, and daily; Ovid Embase; Ovid Cochrane Central Register of Controlled Trials; Ovid Cochrane Database of Systematic Reviews; Web of Science; and Scopus. RESULTS: The initial search yielded 344 articles, from which 19 (5.5%) articles were left on the final source list for this scoping review. Articles were divided into three main groups as follows: studies with the main focus on autism spectrum disorder, attention-deficit/hyperactivity disorder, and internalizing disorders such as anxiety disorders. Most of the studies used either cardio-fitness chest straps with electrocardiogram sensors or wrist-worn biosensors, such as watches by Fitbit. Both allowed passive data collection of the physiological signals. CONCLUSIONS: Our scoping review found a large heterogeneity of methods and findings in artificial intelligence studies in child psychiatry. Overall, the largest gap identified in this scoping review is the lack of randomized controlled trials, as most studies available were pilot studies and feasibility trials.


Subject(s)
Autism Spectrum Disorder , Wearable Electronic Devices , Adolescent , Adolescent Psychiatry/instrumentation , Artificial Intelligence , Child Psychiatry/instrumentation , Humans
14.
Eur J Med Genet ; 65(4): 104473, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35240324

ABSTRACT

Congenital disorders of glycosylation (CDG) represent a wide range of some 150 inherited metabolic diseases, continually expanding in terms of newly identified genes and the heterogeneity of clinical and molecular presentations within each subtype. Heterozygous pathogenic variants in ALG13 are associated with early-onset epileptic encephalopathy, typically in females. The majority of subjects described so far harbour one of the two recurrent pathogenic variants, namely p.(Asn107Ser) and p.(Ala81Thr) in the C-terminal glycosyltransferase domain. We report a novel ALG13 variant (c.1709G > A, p.(Gly570Glu)) in an adult female with unremarkable past developmental and medical history, except for mild kinetic tremor. Our proband presented with acute onset of neurological and psychiatric features, along with liver dysfunction, during pregnancy, all of which gradually resolved after delivery. The proband's newborn baby died at 22 days of life from neonatal liver disease, due to gestational alloimmune liver disease (GALD). Functional assessment on fibroblasts derived from our case showed alterations in 2 of 3 cellular glycosylation markers (LAMP2, Factor IX), suggesting a functional effect of this novel ALG13 variant on glycosylation. This paper raises the possibility that variants outside the glycosyltransferase domain may have a hypomorphic effect leading to atypical clinical manifestations.


Subject(s)
Congenital Disorders of Glycosylation , N-Acetylglucosaminyltransferases , Adult , Congenital Disorders of Glycosylation/genetics , Female , Glycosylation , Heterozygote , Humans , Infant , Infant, Newborn , N-Acetylglucosaminyltransferases/genetics
15.
Genet Med ; 24(4): 894-904, 2022 04.
Article in English | MEDLINE | ID: mdl-35042660

ABSTRACT

PURPOSE: TRAPPC9 deficiency is an autosomal recessive disorder mainly associated with intellectual disability (ID), microcephaly, and obesity. Previously, TRAPPC9 deficiency has not been associated with biochemical abnormalities. METHODS: Exome sequencing was performed in 3 individuals with ID and dysmorphic features. N-Glycosylation analyses were performed in the patients' blood samples to test for possible congenital disorder of glycosylation (CDG). TRAPPC9 gene, TRAPPC9 protein expression, and N-glycosylation markers were assessed in patient fibroblasts. Complementation with wild-type TRAPPC9 and immunofluorescence studies to assess TRAPPC9 expression and localization were performed. The metabolic consequences of TRAPPC9 deficiency were evaluated using tracer metabolomics. RESULTS: All 3 patients carried biallelic missense variants in TRAPPC9 and presented with an N-glycosylation defect in blood, consistent with CDG type I. Extensive investigations in patient fibroblasts corroborated TRAPPC9 deficiency and an N-glycosylation defect. Tracer metabolomics revealed global metabolic changes with several affected glycosylation-related metabolites. CONCLUSION: We identified 3 TRAPPC9 deficient patients presenting with ID, dysmorphic features, and abnormal glycosylation. On the basis of our findings, we propose that TRAPPC9 deficiency could lead to a CDG (TRAPPC9-CDG). The finding of abnormal glycosylation in these patients is highly relevant for diagnosis, further elucidation of the pathophysiology, and management of the disease.


Subject(s)
Congenital Disorders of Glycosylation , Intellectual Disability , Microcephaly , Congenital Disorders of Glycosylation/genetics , Glycosylation , Humans , Intellectual Disability/complications , Intellectual Disability/genetics , Microcephaly/genetics , Mutation, Missense
16.
Genes (Basel) ; 12(11)2021 10 21.
Article in English | MEDLINE | ID: mdl-34828263

ABSTRACT

PMM2-CDG is a rare disease, causing hypoglycosylation of multiple proteins, hence preventing full functionality. So far, no direct genotype-phenotype correlations have been identified. We carried out a retrospective cohort study on 26 PMM2-CDG patients. We collected the identified genotype, as well as continuous variables indicating the disease severity (based on Nijmegen Pediatric CDG Rating Score or NPCRS) and dichotomous variables reflecting the patients' phenotype. The phenotypic effects of patients' genotype were studied using non-parametric and Chi-Square tests. Seventeen different pathogenic variants have been studied. Variants with zero enzyme activity had no significant impact on the Nijmegen score. Pathogenic variants involving the stabilization/folding domain have a significantly lower total NPCRS (p = 0.017): presence of the p.Cys241Ser mutation had a significantly lower subscore 1,3 and NPCRS (p = 0.04) and thus result in a less severe phenotype. On the other hand, variants involving the dimerization domain, p.Pro113Leu and p.Phe119Leu, resulted in a significantly higher NPCRS score (p = 0.002), which indicates a worse clinical course. These concepts give a better insight in the phenotypic prognosis of PMM2-CDG, according to their molecular base.


Subject(s)
Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/pathology , Genetic Association Studies , Phosphotransferases (Phosphomutases)/deficiency , Adolescent , Adult , Belgium/epidemiology , Child , Child, Preschool , Congenital Disorders of Glycosylation/epidemiology , Female , Genotype , Humans , Infant , Male , Middle Aged , Models, Molecular , Mutation , Phenotype , Phosphotransferases (Phosphomutases)/chemistry , Phosphotransferases (Phosphomutases)/genetics , Protein Structure, Secondary/genetics , Retrospective Studies , Severity of Illness Index , United States/epidemiology , Young Adult
17.
Ann Neurol ; 90(6): 887-900, 2021 12.
Article in English | MEDLINE | ID: mdl-34652821

ABSTRACT

OBJECTIVE: Epalrestat, an aldose reductase inhibitor increases phosphomannomutase (PMM) enzyme activity in a PMM2-congenital disorders of glycosylation (CDG) worm model. Epalrestat also decreases sorbitol level in diabetic neuropathy. We evaluated the genetic, biochemical, and clinical characteristics, including the Nijmegen Progression CDG Rating Scale (NPCRS), urine polyol levels and fibroblast glycoproteomics in patients with PMM2-CDG. METHODS: We performed PMM enzyme measurements, multiplexed proteomics, and glycoproteomics in PMM2-deficient fibroblasts before and after epalrestat treatment. Safety and efficacy of 0.8 mg/kg/day oral epalrestat were studied in a child with PMM2-CDG for 12 months. RESULTS: PMM enzyme activity increased post-epalrestat treatment. Compared with controls, 24% of glycopeptides had reduced abundance in PMM2-deficient fibroblasts, 46% of which improved upon treatment. Total protein N-glycosylation improved upon epalrestat treatment bringing overall glycosylation toward the control fibroblasts' glycosylation profile. Sorbitol levels were increased in the urine of 74% of patients with PMM2-CDG and correlated with the presence of peripheral neuropathy, and CDG severity rating scale. In the child with PMM2-CDG on epalrestat treatment, ataxia scores improved together with significant growth improvement. Urinary sorbitol levels nearly normalized in 3 months and blood transferrin glycosylation normalized in 6 months. INTERPRETATION: Epalrestat improved PMM enzyme activity, N-glycosylation, and glycosylation biomarkers in vitro. Leveraging cellular glycoproteome assessment, we provided a systems-level view of treatment efficacy and discovered potential novel biosignatures of therapy response. Epalrestat was well-tolerated and led to significant clinical improvements in the first pediatric patient with PMM2-CDG treated with epalrestat. We also propose urinary sorbitol as a novel biomarker for disease severity and treatment response in future clinical trials in PMM2-CDG. ANN NEUROL 20219999:n/a-n/a.


Subject(s)
Congenital Disorders of Glycosylation/diagnosis , Enzyme Inhibitors/therapeutic use , Phosphotransferases (Phosphomutases)/deficiency , Rhodanine/analogs & derivatives , Sorbitol/urine , Thiazolidines/therapeutic use , Adolescent , Adult , Aged , Biomarkers/urine , Child , Child, Preschool , Congenital Disorders of Glycosylation/drug therapy , Congenital Disorders of Glycosylation/urine , Female , Glycosylation , Humans , Infant , Male , Middle Aged , Patient Acuity , Phosphotransferases (Phosphomutases)/urine , Prognosis , Rhodanine/therapeutic use , Young Adult
18.
Front Hum Neurosci ; 15: 660926, 2021.
Article in English | MEDLINE | ID: mdl-34248523

ABSTRACT

Introduction: Neuromodulation is an important group of therapeutic modalities for neuropsychiatric disorders. Prior studies have focused on efficacy and adverse events associated with neuromodulation. Less is known regarding the influence of neuromodulation treatments on suicidality. This systematic review sought to examine the effects of various neuromodulation techniques on suicidality. Methods: A systematic review of the literature from 1940 to 2020 following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guideline was conducted. Any reported suicide-related outcome, including suicidal ideation, suicide intent, suicide attempt, completed suicide in reports were considered as a putative measure of treatment effect on suicidality. Results: The review identified 129 relevant studies. An exploratory analysis of a randomized controlled trial comparing the effects of sertraline and transcranial direct-current stimulation (tDCS) for treating depression reported a decrease in suicidal ideation favoring tDCS vs. placebo and tDCS combined with sertraline vs. placebo. Several studies reported an association between repetitive transcranial magnetic stimulation and improvements in suicidal ideation. In 12 of the studies, suicidality was the primary outcome, ten of which showed a significant improvement in suicidal ideation. Electroconvulsive therapy (ECT) and magnetic seizure therapy was also shown to be associated with lower suicidal ideation and completed suicide rates. There were 11 studies which suicidality was the primary outcome and seven of these showed an improvement in suicidal ideation or suicide intent and fewer suicide attempts or completed suicides in patients treated with ECT. There was limited literature focused on the potential protective effect of vagal nerve stimulation with respect to suicidal ideation. Data were mixed regarding the potential effects of deep brain stimulation on suicidality. Conclusions: Future prospective studies of neuromodulation that focus on the primary outcome of suicidality are urgently needed. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=125599, identifier: CRD42019125599.

19.
Psychiatry Res ; 302: 114020, 2021 08.
Article in English | MEDLINE | ID: mdl-34098156

ABSTRACT

Prior validation studies of the Bergen Social Media Addiction Scale (BSMAS) demonstrate its utility for identifying problematic social media use in adolescents. There are knowledge gaps regarding the potential clinical and physiological underpinnings of problematic social media use in adolescents. This cross-sectional, single-visit study examined a sample of depressed (n = 30) and healthy (n = 30) adolescents who underwent clinical assessments of depressive symptom severity, bullying, cyberbullying, self-esteem, salivary measures of stress (cortisol and α-amylase) to identify correlates with adolescent and parental reports of the BSMAS. LASSO-penalized multiple linear regression models were implemented. With respect to the adolescent BSMAS scores in all subjects, the risk of problematic social media increased as depressive symptom severity increased. Depressed female adolescents appeared to have a greater risk. Based on parental BSMAS scores, depression status, depressive symptom severity, cyberbullying score, and salivary cortisol significantly predicted problematic social media use. For the depressed sample, the risk of problematic social media use increased as salivary cortisol increased. No significant predictors of problematic social media usage emerged in the healthy control sample. These preliminary results provide novel insights into clinical and physiological characteristics of problematic social media use in adolescents.


Subject(s)
Social Media , Adolescent , Cross-Sectional Studies , Female , Humans , Hydrocortisone , Internet Addiction Disorder , Self Concept
20.
J Psychiatr Res ; 136: 149-156, 2021 04.
Article in English | MEDLINE | ID: mdl-33592386

ABSTRACT

Social media use (SMU) is an inherent element in the daily life and neurodevelopment of adolescents, but broad concerns exist regarding the untoward effects of social media on adolescents. We conducted a prospective, cross-sectional study that sought to examine the acute effects of SMU on clinical measures and biomarkers of stress in healthy and depressed adolescents. After at least 24 h of abstinence from social media, depressed adolescents (n = 30) and healthy control adolescents (n = 30) underwent baseline clinical assessment of their prior SMU, depressive symptom severity, self-esteem, and exposure to bullying. Participants provided salivary samples that were analyzed for α-amylase and cortisol levels. After 20 min of unsupervised SMU, saliva analyses and clinical assessments were repeated. After 20 min of SMU, salivary cortisol and α-amylase levels were significantly higher in adolescents with depression but not in healthy control adolescents. Furthermore, small but statistically significant changes in depressive symptom severity occurred in all participants. These changes in depressive symptoms were not clinically meaningful. SMU did not significantly change self-esteem measures among participants. Adolescents with depression appeared to have more physiological reactivity after SMU compared with healthy adolescents. Further research should characterize SMU as a clinical dimension and risk factor among adolescents with depression and other psychiatric disorders.


Subject(s)
Social Media , Adolescent , Biomarkers , Cross-Sectional Studies , Depression/etiology , Humans , Hydrocortisone , Prospective Studies , Saliva , Stress, Psychological
SELECTION OF CITATIONS
SEARCH DETAIL
...